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A new local pressure loss coefficient model of a duct tee junction applied during transient
simulation of a HVAC air-side system
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Most of the local pressure loss coefficient (LPLC) models for duct fittings used in heating, ventilation and air conditioning
(HVAC) air-side system transient simulations are simplified. The LPLCs are defined as having a constant value at the rated
flow condition or as having a polynomial function of the flow ratio (or velocity ratio). To determine the influence of these
simplifications, this study used a diverging tee junction as an example. First, we performed CFD calculations to generate a
new LPLC dataset and trained a data-driven model using feature weighted support vector regression (FWSVR) combined
with particle swarm optimization (PSO-FWSVR). Finally, we compared this new LPLC model with the two traditional
models at the level of both individual junction and air-side system. The results show that the accuracy of the new model is
greatly improved and the LPLC model can have a significant impact on the system operation condition.

Keywords: HVAC air-side system; system pressure-and-flow coupling; local pressure loss coefficient; uniform design;
feature weighted SVR

Introduction
Indoor comfort with low energy consumption is always
the common goal of heating, ventilation and air condition-
ing (HVAC) engineers. Among the main subsystems of a
HVAC system, the air-side system controls the amount of
energy that is transmitted into the occupied space and it
has the most direct influence on the indoor environment.
A well-controlled air-side system is beneficial to achieving
this goal. To test the effectivity of a new control strategy,
simulation is often used. There are several commonly used
HVAC transient simulation platforms, such as TRNSYS,
Simulink and Dymola. Researchers use these platforms to
reflect the variation of the operational system condition,
for example, how the supply air flow varies when adjust-
ing the openings of terminal dampers. When conducting a
transient simulation of the air-side HVAC system, the bal-
ance between fan pressure and ductwork resistance should
be considered carefully. This balance will determine the
flow condition of the air distribution system, including the
total air flow rate (FR) and flow allocation among the air
branches and, finally, the temperature of every single ter-
minal zone supplied by one air branch. As a result, the
resistance property of the component models is important
for correct simulation of a HVAC air-side system. How-
ever, the resistance properties of duct fittings are often
neglected or greatly simplified. Besides control simulation,
many energy analysis programmes use correlation-based
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models that relate the part-load supply air FR with the
part-load fan electric demand with the neglection of duct
resistance property. It is a simplified and computationally
efficient way. But considerable errors are inevitable if high
precision of simulation for control is required for one’s
research purpose.

Chen and Treado (2014) developed a Simulink block
library of dynamic HVAC component models, in which the
modules of junctions, such as flow splitting and merging,
are included. The pressure loss at these junctions is defined
as the product of a constant value and the square of the
mass FR of air, as Equation (1) for splitting. The same
constant value assumption is also adopted by the Model-
ica Building Library (Wetter 2009), as Equation (2), which
was developed by LBNL. With regards to TRNSYS, the
flow split type in its official type library does not con-
tain resistance properties. As a result, some researchers
have developed their own fitting types. Liu, Peng and
Zhang (2012) built a mathematical model to reflect the
hydraulic characteristics of a VAV (variable air volume)
air-side system and defined the local pressure loss coeffi-
cient (LPLC) of a tee junction as a quadratic polynomial
function of the flow ratio of the downstream branch to the
upstream branch, as Equation (3). These references present
two LPLC models for tee junctions, with different degrees
of simplification, that is, a constant value model and a poly-
nomial model. One question that arises: How will these
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two models function in simulating the real-time operational
condition of the air-side system? Will the simplification
applied to models have any influence on the accuracy of
the simulation?

�p = 0.5Ksign(mi)m2
i + 0.5Ksign(mo)m2

o, (1)

�p = m2

(mnominal/
√

�pnominal)
2 , (2)

�p = a · FR2 + b · FR + c, (3)

where m is the mass flow rate (kg/s), FR is the flow rate
ratio between downstream and upstream branch; the sub-
scripts of i and o mean inlet and outlet branches, and
nominal means the value under nominal conditions.

If one wants to build a new fitting resistance model
or select proper parameters for known models, the exist-
ing LPLC tables are a fundamental dataset that can be
used. The LPLC of duct fitting is a historical research topic
dating back to the 1950s. Most of the early studies were
experimentally based, including the works of ASHRAE
(2009), Miller (1971), Idel’chik (1986). However, since the
experimental method and the geometry details for a type
of fitting, such as a tee junction, are different from each
other, there are differences among the LPLC results from
different experiments. The results from the former Soviet
Union were used in China until the 1980s, when the China
Ministry of Construction organized a series of studies to
construct an internal LPLC database and eventually pub-
lished a handbook (China Academy of Building Research
1978) of ducts and fittings. For only three-way junctions,
the handbook gives seven recommendations for geomet-
ric configurations and also tables of LPLCs for different
combinations of ARs and FRs for the branch section to the
upstream section for each configuration. The LPLC tables
for many types of fittings can also be found in the chapter
on duct design in the ASHRAE Handbook of Fundamen-
tals (2009). However, Shao and Riffat (1995) stated that
some of the LPLCs for junctions in the ASHRAE hand-
book may have large errors due to neglecting the Reynolds
number.

CFD has proved to be convenient and sufficiently accu-
rate to calculate LPLCs for duct fittings and has been used
since the end of the last century. Mumma, Mahank and
Ke applied the k–ε model to determine the LPLC of a
flat oval duct (1997) and fittings (1998) and compared the
prediction results to the measured data. Gan and Riffat
(2000) obtained LPLCs for a square cross section junction
in converging and diverging conditions with various flow
ratios. The CFD results exhibit good agreement with the
measured data. They also used a polynomial function to
describe the relationship between the junction LPLC and
flow ratios. To generalize the use of CFD in LPLC calcula-
tions, ASHRAE organized an international competition for
predicting LPLCs of a duct junction using CFD without
previous knowledge of the experimental data. The winner

of this contest, Liu, Long, and Chen (2012), described the
entire process for numerical calculation and comprehen-
sively analysed the influence of the mesh size, turbulence
model and surface roughness. They emphasized that sur-
face roughness has a great impact on the performance of
CFD when determining LPLCs.

From all of the existing LPLC datasets and the related
literature, we know that LPLC is mainly affected by geom-
etry factors, the real-time flow allocation and upstream
flow condition. An ideal LPLC model should be capable of
simultaneously reflecting the influence of all of these fac-
tors. In the meantime, the model should be easy to use and
run quickly. The geometry parameters are set by users
prior to the simulation, and the flow condition variables
are transmitted among different modules during simula-
tion. Unfortunately, this type of model is not found in any
available relevant studies.

Therefore, in this study, we examined a diverging
smooth tee junction as an example to describe the process
for new LPLC model development. Then, the proposed
model was compared to two simplified LPLC models
(polynomial and constant value model) to validate the
improved accuracy and determine the error from the junc-
tion resistance simplifications.

Methodology
Since the existing LPLC database may have some flaws,
we had to generate a new set of LPLC data. We chose
to use CFD to calculate the LPLCs of the objective junc-
tions since it is more economical than determining them
experimentally. According to Liu, Long, and Chen (2012),
the surface roughness has a significant influence on the
CFD results for the LPLC. Therefore, it is necessary to
first calibrate the relevant CFD parameter settings. We per-
formed a small fraction of the experiments on an individual
diverging tee junction to calibrate the relevant parame-
ters in the CFD settings and assumed that the calibrated
parameter combination was applicable throughout the sub-
sequent CFD cases, since the material and manufactural
specification of the ducts and junctions is the same. Once
the CFD parameters are calibrated, the LPLC results from
these CFD calculations were used as the dataset.

Then, we designed cases for the CFD calculations so
that the junction geometry and flow condition factors could
be considered simultaneously. Orthogonal design and uni-
form design are two commonly used experimental design
methods. Considering the time required for CFD, reduc-
ing the number of cases becomes the first priority when
choosing the case design method. Comparatively speaking,
a uniform design can arrange more levels of independent
variables under the same number of tests with better sam-
pling uniformity. Fang et al. (2000) proposed this method
and applied it broadly in many fields (Fang et al. 2000;
Fang and Lin 2008). Therefore, we adopted the uniform
design method in this work.
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During the model fitting procedure, response surface
and machine learning methods are commonly used. From
observing the existing LPLC data, the relationship between
the LPLC and geometry and flow condition factors is quite
nonlinear. In addition, since generating the training dataset
for the LPLC is very time-consuming, even for CFD, the
size of the dataset cannot be large. Therefore, we chose
the support vector regression method (SVR) proposed by
Vapnik (1995) to fit the LPLC data, as it has a good gen-
eralization performance and predictive accuracy in regard
to dealing with a small sample size, nonlinearization and a
high number of dimensions. Using previous research (Lin
et al. 2008; Niu and Guo 2010), we utilized the parti-
cle swarm optimization (PSO) algorithm to optimize the
SVR parameter and also the weight factors for different
independent variable features to improve the predictive
performance.

Finally, we compared this new LPLC model with the
two traditional models in two stages. During the first stage,
we compared the LPLC results from the PSO-FWSVR
model with those from the polynomial function model on
the same test dataset to determine the deviation in the
LPLC for an individual junction. Second, we built a sim-
ple ductwork system to demonstrate the influence of the
three different LPLC models on the simulated results for
the system operation conditions at the system level. The
entire workflow is shown in Figure 1.

Tee junction resistance experiment and CFD parameter
calibration
The item chosen for examination in this work is a smooth
duct tee junction, as shown in Figure 2. The duct was
made from galvanized iron sheet and connected by a
flange with a foam stripe added to seal the connection.
Figure 3 shows that the length of the straight duct upstream
and downstream of the junction was set to 11.5D and
16D, respectively, according to ASHRAE Standard 120
(ASHRAE, 2008), where D is the hydraulic diameter. The
position of the pressure measuring section was set to 1.5D
upstream from the junction inlet and 12D downstream from

Figure 2. Diagrammatic drawing of experimental tee junction
with cross sections.

the two outlets. The FR was measured prior to entering
the upstream duct and after exiting the downstream duct.
The air FR of the blower was controlled according to the
difference between measured the upstream FR and its set-
point at a precision of ± 3%. Flow allocation between the
two branches was achieved by changing the position of
the dampers attached to the end of each branch. During the
experimental process, the total flow was set at five levels,
evenly spaced from 3277 to 4865 m3/h. For each level of
total flow, the vertical branch flow was adjusted at five lev-
els that were evenly spaced from 290 to 2080 m3/h. There
were 5 × 5 = 25 cases for each branch.

LPLC was calculated using the following equations,
referenced from ASHARE handbook (2009) and Standard
120 (2008).

For blow-through branch:

ξb = (1/2ρV2
u + Ps,u)− (1/2ρV2

b + Ps,b)− �Pf ,u − �Pf ,b

1/2ρV2
u

.

(4)
For vertical branch:

ξv = (1/2ρV2
u + Ps,u)− (1/2ρV2

v + Ps,v)− �Pf ,u − �Pf ,v

1/2ρV2
u

.

(5)

Figure 1. Workflow diagram.
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Figure 3. Diagrammatic drawing of junction resistance test apparatus.

The subscripts u, b and v refer to the pressure measur-
ing section of upstream, blow-through and vertical branch
respectively. 1/2ρV2 refers to dynamic pressure and Ps the
static pressure. And �Pf ,u,�Pf ,b, �Pf ,v means the duct
friction pressure loss of upstream duct, blow-through and
vertical branch, respectively. It should be noted that the
reason why the LPLCs are not calculated using the method
from the ASHRAE Standard 120, where the dynamic pres-
sure of the downstream section is used as the denominator,
is that the downstream dynamic pressure could be very
small for some relatively extreme conditions, such as a
flow ratio of 0.1/0.9. Small variations in the measured
data could introduce large differences in the LPLC value.
However, the value of the upstream dynamic pressure,
in contrast, is relatively larger and more stable during
the measuring process. Therefore, to reduce errors, the
above equations were applied. Although a comprehen-
sive comparison for the LPLC calculation method used
here against AHSRAE database is not presented here,
the experiments are sufficient to support calibration of
CFD parameters and the data points show a more obvious
trend.

The duct friction pressure loss coefficient was cal-
culated using the Moody equation (Moody 1947), as
Equation (6), in which the roughness height of K was
determined by a straight duct resistance experiment and
Re as Equation (7). Then the fiction pressure loss is
calculated using Darcy equation (ASHRAE 2009) as
Equation (8).

λ = 0.0055

[
1 + (20, 000

K
d

+ 106

Re
)

1/3]
, (6)

Re = 66.4dV, (7)

�Pf = λ
l
d
(1/2ρV2). (8)

Since the Moody equation was applied to the LPLC cal-
culation for both the CFD and experimental results and
the friction pressure loss and upstream dynamic pressure
were almost the same, only the total pressure loss on both
sides need to be compared to each other. For the vertical
branch, the measured total pressure loss was obtained by
summing the difference of the static and dynamic pressures
between the upstream and downstream sections. For the
blow-through, the static pressure difference is too small to
be measured accurately. We used a Pitot tube and a differ-
ential pressure gauge with a high sensitivity to measure the
total pressure difference at the centre of the sections.

On the other side of CFD simulation, the settings of
meshing and CFD calculation were as follows:

• Meshing: Four layers of boundary mesh with 3 mm
wide for the first layer; 20 mm of mesh size along the
flow direction and 10 mm among the cross section
and smaller mesh size applied at the junction.

• Boundary conditions: Velocity inlet with the same
volume flow as in experiment; inlet turbulence
defined in the mode of hydraulic diameter and tur-
bulence intensity which is calculated as Equation
(9); Outflow outlet; Wall roughness height set within
0.15 ∼ 1 mm and roughness constant within 0.5 ∼ 1.

Turbulence intensity = 0.16Re−0.125. (9)

Turbulence model: Standard k − ε model.



Journal of Building Performance Simulation 117

• Convergence condition: 1e − 3 for continuity and
1e − 6 for other variables.

• SIMPLE pressure–velocity coupled algorithm and
default scheme of ANSYS Fluent 14.0 for variable
discretization.

Case design process for CFD calculation
Before case design, the dependent and independent vari-
ables should be determined. The LPLCs for the blow-
through and vertical branch became the dependent vari-
ables. According to the influencing factors in some existing
LPLC tables, we first chose the section area ratios ARb and
ARv and the flow ratio FRb as the independent variables.
The subscripts b and v refer to the ratio of blow-through
and the vertical branch to the upstream, respectively. In
addition, since Shao and Riffat (1995) states that the
Reynolds number Re also has an impact on the LPLC,
we included the upstream inlet velocity V to reflect the
influence of Re.

China’s state and local construction departments have
published a few manufacturing specification standards for
duct fittings. In one of the local standards (DBJT05-104)
(Building Standard Design Institute of Liaoning Province
of China 1999), the section area ratio (AR) for a smooth
tee junction should meet the following limits:

1 ≤ ARb + ARv ≤ 1.16,

ARb ≥ 0.5, (10)

ARv ≤ 0.65.

Based on the dimensional recommendations in the stan-
dard, six combinations of ARb and ARv were determined
in total, as shown in Table 1. Since a linear constraint exists
between ARb and ARv , we designed a tri-variable case set
for each level of ARb and used the multi-level uniform
design table U6 (62 × 2) to arrange the cases, where ARv

was set in the corresponding two levels and FRb and V in
the six levels within [0.1, 0.9] and [4, 12], respectively,
as listed in Table 2. The reason why the range of FRb is
[0.1,0.9] is that some branch flow may be very small dur-
ing operation when the corresponding terminal damper is
nearly closed. Then, the geometry models for the CFD cal-
culation were constructed according to the values of ARb

Table 1. Combinations of ARb
and ARv .

ARb ARv

0.5 0.5
0.63

0.63 0.4
0.5

0.8 0.25
0.3

Table 2. Uniform design case set.

Case No. ARb ARv FRb V (m/s)

1 0.50 0.5 0.1 5.6
2 0.63 0.26 8.8
3 0.5 0.42 12
4 0.63 0.58 4
5 0.5 0.74 7.2
6 0.63 0.9 10.4
7 0.63 0.4 0.1 5.6
8 0.5 0.26 8.8
9 0.4 0.42 12
10 0.5 0.58 4
11 0.4 0.74 7.2
12 0.5 0.9 10.4
13 0.80 0.25 0.1 5.6
14 0.3 0.26 8.8
15 0.25 0.42 12
16 0.3 0.58 4
17 0.25 0.74 7.2
18 0.3 0.9 10.4

and ARv , and the boundary conditions were set accord-
ing to the values of FRb and V. Finally, the LPLCs for
both the blow-through and vertical branches were calcu-
lated using Equation (4) and (5), where the total pressure
loss is obtained from CFD and the friction pressure loss is
calculated using Equation (6)–(8). Two decimal places of
the LPLC results are reserved.

PSO-FWSVR of LPLC data
After the CFD results for the LPLCs were obtained,
the corresponding feature weighted support vector regres-
sion (FWSVR) model could be constructed. The feature
weights and some parameters of FWSVR was optimized
using PSO algorithm. Here presents some basics of the
FWSVR and PSO algorithms.

The machine learning method of SVR is actually an
application of support vector classification method by
introducing the loss functions, which deals with the regres-
sion problems. The most popular loss function is the
epsilon loss function proposed by Vapnik (1995). For a cer-
tain training set like T = {(x1, y1), (x2, y2) . . . (xi, yi) . . .} ∈
(Rn × R1), where xi ∈ R1×n, yi ∈ R, i = 1, 2 . . . l. Thus, the
independent variable xi is a multi-dimensional vector. Each
dimension refers to an influencing factor, which is called
the feature of xi. SVR utilizes kernel function to map the
data from the original data space to some high-dimensional
feature space when nonlinear relationship exists between xi
and yi. And the most popular kernel function is Gaussian
radial basis kernel function as Equation (11) which satisfies
the Mercer condition as Equation (12).

ϕ(xi, xj ) = exp(− γ ||xi − x2
j ||), (11)

k(xi, xj ) = ϕ(xi) · ϕ(xj ). (12)
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When the correlation degree with yi varies among the
different features of xi, applying the same feature weight
to all of the features during regression can cause undesir-
able prediction accuracy. One can use a diagonal matrix of
A = diag(γ1, γ2 . . . γi . . .), i = 1, 2 . . . n, where γi ∈ [0, 1]
representing the weight of the i’th feature, to assign differ-
ent weight to each feature. And the unknown parameters
of the final feature weighted SVR function as Equation
(13) are estimated by minimizing the following dual prob-
lem as Equation (14) and Equation (15), where C is the
regularization parameter.

f (x) =
n∑

i=1

(a∗
i − ai)K(Axi, Ax) + b, (13)

min
1
2

n∑
i,j =1

(ai − a∗
i )(aj − a∗

j )(ϕ(Axi) · ϕ(Axj ))

+
n∑

i=1

ai(ε − yi) +
n∑

i=1

a∗
i (ε + yi), (14)

s.t.

{∑n
i=1(ai − a∗

i ) = 0
ai, a∗

i ∈ [0, C]
. (15)

The prediction performance of the SVR is strongly affected
by the selection of the regularization parameter C, the ker-
nel function parameter γ and the loss function parameter ε.
The K-fold cross validation (CV) method is usually used to
determine the appropriate SVR parameters. For one com-
bination of parameters, the K-fold CV method divides the
training set into K groups, chooses one of them as the test
set, uses the rest to train a SVR model and calculates the
errors of this SVR model using the test set. This process is
performed until every group has been used as the test set.
The average test error for each time is called the CV error
for the current parameter combination. The SVR training
and K-fold CV process was performed using LIBSVM, a
Matlab SVR toolbox developed by Chang and Lin (2011).

Heuristic algorithms are often used to efficiently find
proper parameters. Among them, the PSO algorithm is a
good choice because of their quick convergence and good
optimization precision. The use of the PSO algorithm has
been proposed by Kennedy and Eberhart (1995). In 1998,
Shi and Eberhart (1998) introduced an inertia weight ω to
improve the convergence performance. Since then, PSO
with an inertia weight has gradually become the standard
PSO algorithm. In the optimization process for the PSO,
every particle flies in the solution space of the optimization
problem. The position of each particle represents a poten-
tial solution. In addition to a position, a velocity is also
assigned to each particle. During every iteration, the parti-
cles update their own velocities and positions, as defined in
Equation (16) and (17). To balance the ability of local and
global searching properly, dynamic inertia weight is often
applied, meaning that ω changes during iterations. In this

study, ω is determined from Equation (18).

vk+1
i = ωvk

i + c1r1(pi − zk
i ) + c2r2(pg − zk

i ), (16)

zk+1
i = zk

i + vk+1
i , (17)

ωk = ωmax − ωmax − ωmin

itermax
× k, (18)

where pi represents the best position of the i’th particle, pg
represents the best position of the entire group, zk

i is the
position of the i’th particle during k’th iteration, c1, c2 are
acceleration factors, r1, r2 are random numbers between [0,
1], ωk is the inertia weight for the k’th iteration and itermax
is defined as the maximum number of iterations.

Here, we used PSO with the linear dynamic inertia
weight to simultaneously determine the SVR parameters of
C and γ and the weights of each feature for the independent
variables to build the PSO-FWSVR model of the LPLCs.
The detailed modelling process is described by taking the
vertical branch LPLC as an example, which is analogous
to the modelling process for blow-through branch LPLC.

We chose the area ratios ARb and ARv , the upstream
inlet velocity V and the velocity ratio (VR) of the vertical
branch to the upstream duct VRv as the features of the inde-
pendent variable. So here xi = (ARb, ARv , VRv , V). The
reason why VRv was used instead of the flow ratio was
that some researchers have mentioned that the correlation
between the LPLC and VR exhibited more regularity than
the correlation using the flow ratio, which has also been
validated during trials. Therefore, the weight of VRv was
set to 1 and the weights of the others were altered by the
PSO. So the position vector zi = (WARb

, WARb
, WV, C, γ ),

where W means the feature weight. The CV error was used
as the fitness function. Prior to regression, the values of
VRv and V were linearly normalized using Equation (19).
Some other constants for the PSO and the alternation range
of the optimization variables are shown in Table 3.

x′
i = xi − xmin

xmax − xmin
. (19)

Since SVR has a very strong ability of regression, it is
common to use another entirely different dataset to test the
prediction accuracy of the SVR model. Here we chose two
sets of data to use as the test set. Group A (25 points) was
the full permutation results of the LPLCs of a tee junction
whose ARb and ARv were both set to 0.5 when FRb and
V were set in five levels each within their own range. This
was used to test the model performance when predicting
the LPLCs of a junction with a certain dimension for differ-
ent combinations of FRb and V. Group B (5 points) was the
LPLC results of the junctions with the remaining five ARb
and ARv combinations and random values for FRb and V.
This group was used to test the model performance for
junctions with different dimensions. The prediction perfor-
mance on the test set was evaluated using the mean square
error (MSE), the correlation coefficient R2 and the mean
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Table 3. PSO constant and alternation range of optimization variables.

PSO constant Alternation range of optimization variables

(c1, c2) (ωmax, ωmin) itermax Population size Feature weight C γ

(2, 2) (1.2, 0.4) 500 20 [0,1] [0.1, 100] [0.01, 10]

absolute percentage error (MAPE), as shown in Equation
(20) and Equation (21):

MSE = 1
n

n∑
i=1

|ξCFD,i − ξSVR,i|2, (20)

MAPE = 1
n

n∑
i=1

∣∣∣∣ξCFD,i − ξSVR,i

ξCFD,ave

∣∣∣∣ × 100%, (21)

where ξCFD,ave is the mean value of the CFD LPLCs of the
test set.

Comparison with the traditional LPLC models
First, we compared the results from both the polynomial
model and PSO-FWSVR model to the CFD results to
verify the improvement in accuracy when calculating the
LPLC of an individual junction. Here, the constant value
model was removed since it keeps the LPLC unchanged.
To build the polynomial model, we performed a univariate
cubic polynomial regression for both the blow-through and
vertical branch LPLCs with the same training set using the
VR as the independent variable.

Then, we transitioned to the system level and modelled
a simple duct system with three outlets connected by sev-
eral straight ducts and two tee junctions and driven by a
constant speed fan using the Simulink platform, as shown

in Figure 4. The three tee junction LPLC models were used
one by one. Here, three dampers with hydraulic diame-
ters of 315, 200 and 200 mm were placed at outlets A, B
and C, respectively. The rated flows were 3000 and 2000
m3/h. The relationship between flow, opening and resis-
tance is described as a 2D table, from which the pressure
loss for each combination of flow and damper opening
could be looked up. The data were provided by a damper
manufacturer. Then, the capacity of the fan was determined
according to the total flow summed from all of the outlets
and the corresponding pressure loss from the ductwork.
The fan flow and static pressure curves were defined as
quadratic polynomial functions. For the ducts, the friction
was determined using the Moody equation. Since it is only
a demo to demonstrate the influence of LPLC model to
system operation condition, the length of each duct was
tuned to achieve a balanced flow between the branches at
the rated condition for simplicity. For the constant model,
the tee junction LPLC value at the rated flow condition was
chosen to be kept constant during the simulations. Here, the
rated LPLC value was set to be the same as that from the
PSO-FWSVR model.

The simulation period was set to be 200 s. During the
simulation, the opening of the damper at outlet B was
defined as a ramp function, as shown in Figure 4, which
started to decrease at 50 s from 100% to 30% over the fol-
lowing 150 s. Dampers A and C were kept 100% open

Figure 4. Demonstration of simple duct system driven by constant speed fan.
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throughout the simulation process. The flow conditions
and the LPLCs of the two junctions were monitored for
comparison.

Results and discussion
Calibration of CFD roughness parameter
After several rounds of trials and errors, the total pres-
sure loss results for a roughness height of 0.7 mm (which
is larger than the 0.15 mm ideal roughness height for gal-
vanized sheet iron) and a roughness constant of 0.8 were
found to be in best agreement with the experimental data.
As shown in Figure 5, the mean absolute error for the
blow-through branch is 10.6% and is 4.07% for the vertical
branch. After roughness parameter calibration, the pressure
loss results from the CFD are very close to the measured
data. This roughness parameter combination was used in
all of the other CFD calculations.

LPLCs results of PSO-FWSVR model
We first trained the PSO-FWSVRUD model for the vertical
branch LPLC using the 18-point uniform design results.

Figure 5. Comparison between measured total pressure loss and
CFD results:(a) blow-through branch, (b) vertical branch.

Table 4. Final feature weights, SVR parameters and MSE,
R2 and MAPE of PSO-FWSVRUD for vertical branch LPLC.

Feature weights (C, γ ) MSE R2 MAPE/%

(1, 0, 1, 0.018) (100, 1.647) 0.0570 0.9728 16.84

Note: the figures in (1, 0, 1, 0.018) represent the weights of
ARb, ARv , VRv and V successively.

The final optimized feature weights, SVR parameters and
results of the MSE, R2 and MAPE are listed in Table 4.

From Table 4, the predicted R2 is as high as 0.973. The
weight of ARv is altered to 0 by the PSO, meaning that the
influence from ARv could be neglected based on this set of
training data. One way to explain this is that the VR is actu-
ally the result of the flow ratio divided by the AR so that
the influence of the AR is reflected to some extent in the
VR. In the meantime, the weight of the upstream velocity
V is also remarkably reduced to 0.018. To understand this,
we examined the distribution of the vertical branch LPLCs
of test set group A, as shown in Figure 6 (a). The vertical
branch LPLCs have a polynomial relationship with VRv

Figure 6. Distribution of LPLCs of group A on the dimension
of velocity ratio and upstream velocity. (Note: The five points in
(b) are those from the circle in (a).)
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on a macro level, which is consistent with previous con-
clusions. Only over a relatively small range do the LPLCs
vary with the upstream velocity for a certain level of VR,
as shown in Figure 6 (b). Therefore, the weight of the
upstream velocity is small.

However, one fact that cannot be ignored is that
although the R2 of PSO-FWSVRUD is very high, the
MAPE is 16.84%, which is still too high to accept. More
importantly, the feature weight of ARv is set as 0, which is
physically unreasonable. To address this, we first observed
the distribution of the relative errors in the LPLCs, as
shown in Figure 7. Most of the large errors are associ-
ated with the small LPLCs. When we zoom in the small
LPLC zone as shown in Figure 8, we can see that the orig-
inal PSO-FWSVRUD cannot reflect the true trend for the
LPLCs along with upstream velocity, which happens to be
the opposite. Since the weight of the upstream velocity is
significantly reduced, an alternation of the feature weight
may result. To eliminate this possibility, we constructed a
PSO-SVRUD model with equal feature weights using the
same 18-points training set. The results of this examina-
tion for the small LPLC region are also shown in Figure 8.
The trend from this examination is even stranger. After
this potential reason was excluded, we believed that this
error may be caused by the small size of the training set.
Although the uniform design method guarantees the uni-
formity of the data points in the sample space, fewer points
lead to longer distances between each other. The SVR has
an extremely strong fitting capability. As a result, the func-
tional relationship between data points may be twisted.
From Figure 6 (a), we can see that the LPLC variations
caused by the upstream velocity are not the same for the
different velocity ratios. The larger the LPLCs, the stronger
the influence from the upstream velocity. Therefore, the
feature weights may be different when the LPLCs fall into
zones of different values. However, since only one set of
feature weights could be used for training, to help the PSO
to determine an appropriate feature weight, we decided to
supplement more data points with small LPLCs to feed
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the model with more information on this region. The same
amount of points from the larger value zone was also used
in the training set to ensure balance.

Since the LPLCs are macroscopically influenced by
the VR, we must determine for which VR the LPLCs
are relatively small or large for the junctions for different
combinations of ARb and ARv . Here, we used the same
weight PSO-SVRUD model to predict the LPLCs for an
8 m/s upstream velocity and a flow ratio from 0.1 to 0.9
for every junction with the ARb and ARv values listed in
Table 1. We assumed that the macroscopic trend in the pre-
dicted results was reproducible, regardless of the fact that
every single LPLC value may be inaccurate. The prelimi-
nary prediction results are shown in Figure 9. For a junction
of a certain dimension, the largest vertical branch LPLCs
appear when flow ratio is 0.1 and the smallest appear near
0.7 ∼ 0.8. Finally, we performed three supplemental CFD
calculations for every junction with the upstream velocity
set at 4, 8 and 12 m/s and the flow ratio set to 0.1 for the
large LPLC value zone and also performed another three
calculations for the small value zone. Therefore, for the
entire set of six types of junctions, there are 6 × 6 = 36
supplemental data points.

Then, the 36 supplemental points together with the
original 18 uniform design points were used to train the
PSO-FWSVRUD+Sup model. The final feature weights,
SVR parameters and accuracy indices are listed in Table 5.
Using the supplemental points, the MSE and R2 improve
and, more importantly, the MAPE decreases considerably
from 16.84% to 2.76%. We can also find that the opti-
mized feature weights are changed. The weight of ARv

is no longer zero and the weight of ARb decreases from
1 to 0.583. The influence of the upstream velocity also
increases. From the variation of MAPE, we can infer that
the targeted supplemental points have a positive effect on
determining the proper feature weights and corresponding
SVR parameters with which the PSO-FWSVR model can
adequately fit all the test points throughout the available
range.
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Figure 9. Preliminary prediction results of vertical branch
LPLCs from equal weight PSO-SVR model. (Note: the fig-
ures like 0.63_0.5 in the legend are the values of ARb and
ARvsuccessively).

Table 5. Final feature weights, SVR parameters and accuracy
indexes of PSO-FWSVRUD+Sup for vertical branch LPLC.

Feature weights (C, γ ) MSE R2 MAPE/%

(0.583, 0.375, 1, 0.072) (100, 9.965) 0.0016 0.9982 2.76

Note: the figures of (0.583, 0.375, 1, 0.072) have the same
meaning as the notation of Table 2.

Table 6. Final feature weights, SVR parameters and accuracy
indexes of PSO-FWSVRUD+Sup for blow-through branch LPLC.

Feature weights (C, γ ) MSE R2 MAPE/%

(0.164, 0.623, 1, 0.193) (100, 1.637) 0.00016 0.9993 2.46

Note: the figures of (0.164, 0.623, 1, 0.193) represent the weights
of ARb, ARv , VRb (velocity ratio of blow-through branch to
upstream) and V successively.

The PSO-FWSVR model for blow-through branch
LPLC was built using the same procedure as that for the
vertical branch. The corresponding results of the PSO-
FWSVR model are listed in Table 6, which shows a
consistently good prediction performance.

Comparison with the traditional LPLC models
Individual junction level comparison
The MAPEs of the vertical and blow-through branch
LPLC results from the polynomial model are 27.93% and
11.25%, respectively. The comparison results are shown in
Figure 10. The prediction results from the PSO-FWSVR
model are closer to the CFD results for almost every test
data point compared. Using the VR of the downstream
branch to the upstream branch as the only independent
variable to predict the LPLC is insufficient to reflect the
highly nonlinear relationship that the LPLC has with its
influencing factors. The vertical branch LPLC suffers more
significantly than blow-through branch.

Figure 10. LPLC prediction performance comparison between
cubic polynomial model and PSO-FWSVR model.

System-level comparison
On the system-level comparison, the results of the sys-
tem total flow using different LPLC models are shown
in Figure 11. We treat the results from the PSO-FWSVR
model as the baseline since it is the most complex and
accurate LPLC model for an individual junction. Com-
pared with the baseline, the polynomial results have a
stable bias, which is less than 150 m3/h, whereas the results
from the constant value model start to deviate from the
baseline after 50 s and end up with a bias greater than
700 m3/h, which is nearly 15% of the baseline total flow.

Let us take a detailed look at the flow conditions and
corresponding LPLCs at the two junctions for these three
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cases and attempt to determine any noticeable differences.
First we compare the results from the polynomial model
with the baseline. Figures 12 and 13 show the flow condi-
tions and LPLC results for junction 1, respectively. When
damper B starts closing, more air is forced into outlet A
and the total flow decreases. In Figure 12, the biggest
difference between the polynomial result and the base-
line is that the increasing rate of the polynomial vertical
flow of junction 1 is not as rapid as the baseline. The
bias of the polynomial vertical flow from the baseline
is approximately − 150 m3/h, which is 5% of the base-
line vertical flow. This is explained by the corresponding
change of LPLCs in Figure 13. The vertical LPLC from
the polynomial model increases faster than the baseline
and its relative error increases from 20.2% at the begin-
ning to 59.6% at the end of the simulation because the
polynomial model only considers the influence of the VR
and ignores the upstream velocity. The increasing verti-
cal VR causes the vertical LPLC increases, whereas the
decreasing upstream velocity causes it to decrease. For the
blow-through flow, the difference between the polynomial
result and the baseline is completely neglected because
the value of the blow-through LPLC is very small and
the bias of the polynomial blow-through LPLC is stable
throughout the simulation. The corresponding figures are
not explained further as the difference in the flow condition
and the LPLCs of junction 2 determined via the polynomial
model and the baseline are very small. Therefore, we see
that using the polynomial LPLC model and neglecting the
influence of the upstream velocity can cause a large error
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Figure 13. Comparison of LPLCs of junction 1 between poly-
nomial and the baseline model.

in the LPLC initially and then cause a different change rate
in the corresponding branch flow. However, the influence
of this causality becomes less significant when the value of
LPLC is small, such as less than 0.1.

Then, we compared the results of the constant value
model with the baseline, as shown in Figures 14–17.

Figure 14. Comparison of flow condition of junction 1 between
constant value and the baseline model.
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Figure 16. Comparison of flow condition of junction 2 between
constant value and the baseline model.
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Table 7. Comprehensive dataset of LPLCs for diverging smooth tee junctions generated by PSO-FWSVR.

Inlet veocity/(m/s)

Geometric configuration Flow ratiob 4 5 6 7 8 9 10 11 12

0.5_0.5a 0.1 Bc 0.289 0.291 0.293 0.295 0.298 0.301 0.305 0.308 0.313
Vc 2.621 2.686 2.741 2.785 2.819 2.843 2.855 2.858 2.849

0.2 B 0.154 0.155 0.157 0.159 0.161 0.164 0.168 0.171 0.175
V 1.759 1.807 1.847 1.878 1.902 1.916 1.922 1.920 1.909

0.3 B 0.045 0.047 0.050 0.054 0.057 0.061 0.065 0.069 0.073
V 1.073 1.106 1.132 1.152 1.165 1.173 1.173 1.167 1.155

0.4 B − 0.015 − 0.010 − 0.004 0.001 0.007 0.012 0.017 0.022 0.027
V 0.608 0.628 0.645 0.657 0.664 0.667 0.665 0.658 0.647

0.5 B − 0.001 0.008 0.017 0.025 0.033 0.040 0.047 0.052 0.058
V 0.333 0.346 0.357 0.365 0.369 0.371 0.369 0.365 0.357

0.6 B 0.115 0.129 0.143 0.155 0.166 0.175 0.183 0.190 0.195
V 0.200 0.210 0.217 0.223 0.228 0.230 0.231 0.230 0.228

0.7 B 0.352 0.373 0.392 0.409 0.424 0.436 0.446 0.453 0.458
V 0.159 0.165 0.170 0.175 0.179 0.182 0.185 0.187 0.189

0.8 B 0.715 0.744 0.770 0.793 0.812 0.828 0.841 0.849 0.854
V 0.196 0.198 0.200 0.202 0.204 0.207 0.209 0.212 0.215

0.9 B 1.171 1.209 1.243 1.272 1.297 1.317 1.333 1.343 1.349
V 0.323 0.319 0.316 0.314 0.312 0.312 0.312 0.313 0.315

0.5_0.63 0.1 B 0.275 0.276 0.278 0.281 0.284 0.287 0.291 0.295 0.300
V 0.619 0.663 0.701 0.734 0.761 0.783 0.798 0.807 0.811

0.2 B 0.141 0.142 0.144 0.147 0.150 0.153 0.157 0.161 0.166
V 0.405 0.439 0.468 0.493 0.513 0.528 0.539 0.545 0.546

0.3 B 0.044 0.046 0.049 0.053 0.056 0.061 0.065 0.069 0.074
V 0.301 0.327 0.349 0.368 0.383 0.394 0.402 0.406 0.406

0.4 B − 0.002 0.003 0.008 0.013 0.018 0.023 0.028 0.033 0.038
V 0.269 0.288 0.305 0.320 0.332 0.341 0.347 0.350 0.351

0.5 B 0.021 0.029 0.036 0.044 0.050 0.056 0.062 0.067 0.071
V 0.274 0.289 0.302 0.313 0.322 0.330 0.335 0.339 0.340

0.6 B 0.131 0.144 0.155 0.165 0.174 0.182 0.188 0.193 0.196
V 0.297 0.308 0.317 0.325 0.333 0.339 0.343 0.347 0.349

0.7 B 0.345 0.363 0.379 0.393 0.405 0.415 0.422 0.428 0.430
V 0.339 0.344 0.350 0.354 0.359 0.363 0.366 0.369 0.371

0.8 B 0.667 0.692 0.714 0.734 0.750 0.763 0.772 0.778 0.781
V 0.410 0.411 0.411 0.412 0.412 0.413 0.414 0.415 0.416

0.9 B 1.071 1.105 1.134 1.160 1.181 1.198 1.210 1.218 1.221
V 0.526 0.520 0.516 0.512 0.508 0.505 0.502 0.500 0.499

0.63_0.4 0.1 B 0.311 0.312 0.314 0.316 0.318 0.320 0.323 0.326 0.329
V 3.471 3.549 3.615 3.668 3.709 3.736 3.751 3.752 3.741

0.2 B 0.201 0.201 0.202 0.203 0.205 0.207 0.209 0.211 0.214
V 2.603 2.669 2.723 2.767 2.800 2.821 2.830 2.828 2.815

0.3 B 0.100 0.100 0.101 0.103 0.105 0.107 0.109 0.112 0.114
V 1.727 1.776 1.816 1.846 1.868 1.880 1.883 1.877 1.861

0.4 B 0.017 0.019 0.022 0.024 0.027 0.030 0.033 0.037 0.040
V 1.037 1.069 1.095 1.114 1.126 1.131 1.128 1.119 1.103

0.5 B − 0.035 − 0.030 − 0.026 − 0.021 − 0.016 − 0.012 − 0.007 − 0.003 0.001
V 0.598 0.619 0.636 0.647 0.654 0.656 0.652 0.644 0.631

0.6 B − 0.039 − 0.031 − 0.023 − 0.016 − 0.009 − 0.002 0.004 0.009 0.014
V 0.373 0.388 0.400 0.410 0.416 0.420 0.420 0.417 0.411

0.7 B 0.022 0.034 0.046 0.057 0.067 0.075 0.083 0.090 0.096
V 0.269 0.281 0.292 0.301 0.309 0.315 0.320 0.323 0.324

0.8 B 0.161 0.179 0.195 0.209 0.222 0.234 0.244 0.251 0.257
V 0.254 0.262 0.269 0.276 0.283 0.290 0.296 0.301 0.307

0.9 B 0.389 0.412 0.434 0.453 0.470 0.484 0.496 0.505 0.511
V 0.374 0.374 0.375 0.376 0.378 0.381 0.383 0.387 0.390

0.63_0.5 0.1 B 0.311 0.312 0.314 0.316 0.319 0.322 0.325 0.329 0.333
V 1.201 1.261 1.313 1.356 1.391 1.417 1.434 1.442 1.441

0.2 B 0.196 0.197 0.198 0.200 0.202 0.204 0.207 0.210 0.214
V 0.756 0.802 0.842 0.875 0.901 0.919 0.931 0.934 0.931

0.3 B 0.094 0.095 0.097 0.099 0.101 0.104 0.107 0.111 0.115

(Continued).



Journal of Building Performance Simulation 125

Table 7. Continued.

Inlet veocity/(m/s)

Geometric configuration Flow ratiob 4 5 6 7 8 9 10 11 12

V 0.491 0.526 0.555 0.579 0.598 0.610 0.617 0.617 0.612
0.4 B 0.015 0.018 0.021 0.024 0.027 0.031 0.035 0.038 0.043

V 0.375 0.401 0.424 0.442 0.455 0.464 0.468 0.468 0.463
0.5 B − 0.032 − 0.027 − 0.023 − 0.018 − 0.013 − 0.008 − 0.003 0.002 0.006

V 0.340 0.360 0.378 0.392 0.404 0.412 0.416 0.417 0.415
0.6 B − 0.033 − 0.026 − 0.018 − 0.011 − 0.004 0.002 0.008 0.014 0.018

V 0.329 0.346 0.360 0.372 0.382 0.390 0.396 0.399 0.400
0.7 B 0.026 0.038 0.049 0.059 0.068 0.076 0.083 0.089 0.094

V 0.331 0.342 0.352 0.362 0.370 0.377 0.383 0.387 0.391
0.8 B 0.157 0.173 0.188 0.201 0.213 0.224 0.232 0.239 0.244

V 0.376 0.381 0.385 0.390 0.394 0.398 0.402 0.405 0.408
0.9 B 0.369 0.391 0.411 0.428 0.443 0.456 0.466 0.474 0.479

V 0.508 0.506 0.504 0.502 0.501 0.500 0.499 0.499 0.499
0.8_0.25 0.1 B 0.311 0.311 0.311 0.312 0.313 0.314 0.315 0.317 0.319

V 8.531 8.611 8.678 8.731 8.771 8.796 8.808 8.805 8.789
0.2 B 0.235 0.233 0.233 0.232 0.232 0.232 0.232 0.233 0.234

V 6.319 6.401 6.471 6.528 6.572 6.603 6.621 6.626 6.617
0.3 B 0.158 0.156 0.155 0.155 0.154 0.154 0.154 0.154 0.155

V 4.325 4.399 4.462 4.513 4.553 4.580 4.595 4.597 4.588
0.4 B 0.083 0.083 0.082 0.081 0.081 0.081 0.082 0.082 0.083

V 3.066 3.125 3.173 3.211 3.238 3.253 3.258 3.251 3.233
0.5 B 0.018 0.019 0.019 0.020 0.021 0.022 0.023 0.024 0.026

V 2.008 2.045 2.074 2.094 2.105 2.107 2.100 2.084 2.059
0.6 B − 0.029 − 0.027 − 0.024 − 0.022 − 0.019 − 0.017 − 0.014 − 0.012 − 0.009

V 1.058 1.076 1.088 1.095 1.095 1.090 1.078 1.061 1.037
0.7 B − 0.051 − 0.046 − 0.041 − 0.036 − 0.031 − 0.027 − 0.022 − 0.019 − 0.015

V 0.527 0.540 0.549 0.555 0.558 0.557 0.554 0.547 0.537
0.8 B − 0.036 − 0.027 − 0.019 − 0.012 − 0.004 0.002 0.008 0.014 0.018

V 0.351 0.364 0.377 0.388 0.399 0.408 0.416 0.423 0.429
0.9 B 0.026 0.038 0.050 0.061 0.071 0.080 0.088 0.095 0.101

V 0.382 0.388 0.394 0.402 0.409 0.417 0.425 0.433 0.442
0.8_0.3 0.1 B 0.319 0.319 0.320 0.321 0.322 0.324 0.326 0.328 0.330

V 5.021 5.100 5.168 5.224 5.268 5.300 5.319 5.326 5.320
0.2 B 0.238 0.237 0.237 0.237 0.237 0.238 0.239 0.240 0.241

V 3.568 3.639 3.700 3.749 3.787 3.814 3.829 3.832 3.824
0.3 B 0.158 0.157 0.156 0.156 0.156 0.156 0.157 0.158 0.159

V 2.563 2.621 2.670 2.708 2.736 2.753 2.760 2.756 2.742
0.4 B 0.081 0.080 0.080 0.080 0.081 0.081 0.082 0.083 0.085

V 1.703 1.744 1.777 1.801 1.816 1.823 1.821 1.810 1.790
0.5 B 0.014 0.015 0.016 0.017 0.019 0.020 0.022 0.024 0.026

V 1.000 1.024 1.042 1.054 1.060 1.059 1.051 1.037 1.017
0.6 B − 0.035 − 0.032 − 0.029 − 0.026 − 0.023 − 0.020 − 0.017 − 0.014 − 0.011

V 0.603 0.619 0.631 0.638 0.642 0.641 0.636 0.627 0.614
0.7 B − 0.057 − 0.052 − 0.046 − 0.041 − 0.036 − 0.031 − 0.027 − 0.023 − 0.019

V 0.455 0.470 0.482 0.493 0.501 0.507 0.510 0.511 0.510
0.8 B − 0.043 − 0.035 − 0.026 − 0.018 − 0.011 − 0.004 0.002 0.007 0.012

V 0.401 0.413 0.425 0.437 0.447 0.457 0.466 0.474 0.481
0.9 B 0.017 0.029 0.041 0.052 0.062 0.071 0.079 0.086 0.092

V 0.463 0.467 0.470 0.475 0.479 0.484 0.489 0.495 0.500

aThe figure like 0.5_0.5 in the column of geometric configuration means the junction whose ARb and ARvare 0.5 and 0.5 successively.
bThe flow ratio is the proportion of blow-through flow rate in the entire flow rate.
cB, V means the value of LPLC is for the blow-through and vertical branch, respectively.

Figures 14 and 15 show the flow conditions and LPLC
results for junction 1, and Figures 16 and 17 provide the
flow conditions and LPLC results for junction 2. In Fig-
ures 14 and 15, the result is similar, as the result from the
polynomial model shows that the main difference exists

in the vertical FR. However, in this case, the vertical
flow from the constant value model increases faster than
the baseline result, and its final bias is 500 m3/h, which
is 16% of the baseline vertical flow and is bigger than
the bias from the polynomial model. In Figure 15, the



126 Q. Wang et al.

constant value model keeps the LPLC value unchanged,
which is copied from the baseline value at the begin-
ning of simulation, and ends with an error of − 20.7%.
Then, as seen from Figures 16 and 17, the difference is
more significant. The blow-through flow of the constant
value model increases, whereas the baseline blow-through
flow decreases, which is in two different directions. The
reason why the baseline blow-through flow decreases is
that the baseline blow-through LPLC increases greatly and
becomes large enough to prevent more air from being
forced into outlet C. Therefore, we see that using the con-
stant value LPLC model results in a bigger deviation than
the polynomial model, and additionally, under some cir-
cumstances, it may lead to completely opposite variation
of flow condition.

From the comparisons and analyses of the results from
the three models at the system level, we first conclude
that the constant value LPLC model is essentially unus-
able since the variation from the fixed value of the rated
condition can be very large, resulting in an error greater
than 10% of the system total flow and a completely differ-
ent variation for the branch flow. Therefore, if one needs to
reflect the mutual influence of adjacent terminal dampers
correctly, the constant value LPLC model should not be
used. With regard to the polynomial model, it appears that
the difference between it and the baseline is not very large,
with only a 5% error of the branch flow in the above
demonstration. However, if we define specific situations,
the difference may be essential. We know that the branch
flow and the pressure loss along this branch are mutually
dependent based on the fan curve. The pressure losses from
each branch all equal to the blast pressure of the fan if
we assume that the outlet pressure of the damper equals
the inlet pressure of the fan, as in the above demonstra-
tion. The extent to which the LPLC model of the junction
influences the branch flow condition is shown by the rel-
ative magnitude of the local pressure loss at the junction
compared with the fan blast pressure. As seen in Figure
13, the error in the LPLC using the polynomial model
may be as large as nearly 60%, meaning that the local
pressure loss at the junction also has an error of 60%
from its actual value. Therefore, if the simulated fan is a
one with a low blast pressure and a relatively large flow,
deviations in the flow condition using polynomial LPLC
model may be more significant. Additionally, if the sim-
ulated system demands high precision control, such as
a precisely controlled constant temperature and humid-
ity conditioner, the error from the polynomial model is
unacceptable.

The baseline model (PSO-FWSVR) development pro-
cess is difficult, but it could be easily deployed and quickly
calculated during simulations. If the simulation platform is
not compatible with the LIBSVM code, it could be used to
generate a look-up table with enough levels of independent
variables, as Table 7, which is still more accurate than the
other two models.

Conclusion
This study used the PSO-FWSVR method to build a new
LPLC model for a smooth diverging tee junction. Then,
the accuracy of the PSO-FWSVR and polynomial models
was compared at the individual junction level. Finally, a
model of a small air-side system was built to demonstrate
the functionality of the two models and the constant value
LPLC model at the system level. The main conclusions
are:

(1) For LPLC model development, it is efficient to
use a uniform design method for the CFD case
arrangement and adopt the PSO-FWSVR method
for data fitting. In this way, we can obtain an
accurate LPLC model with relatively fewer CFD
calculations.

(2) The PSO-FWSVR model can accurately calculate
the LPLC for junctions of different dimensions
under different upstream velocity and flow allo-
cation conditions, which is much better than the
polynomial model for an individual junction.

(3) At the system level, the constant value assumption
for the LPLCs of junctions is too simple to reflect
the variation of the air-side system condition cor-
rectly. The polynomial LPLC model using the VR
as its uni-independent variable may be used to sim-
ulate the most common HVAC air-side systems,
but more care should be taken when simulating
precision-controlled systems.

Nomenclature
ρ Density of air (kg/m3)
1/2ρV2 Dynamic pressure (Pa)
�Pf Friction pressure loss (Pa)
K Roughness height (m)
D, d Hydraulic diameter (m)
AR Area ratio of the downstream to upstream

section
FR Flow rate ratio of the downstream to

upstream section
VR Velocity ratio of the downstream to

upstream section
V Upstream inlet velocity (m/s)
λ Friction pressure loss coefficient
l Length of straight duct (m)
C Regularization parameter of SVR
Γ Constant in Gaussian radial basis kernel

function of SVR
c1, c2 Accelerating factors for local and global

searching abilities of PSO
ωk Inertia weight for the k’th iteration of PSO
ξ Value of LPLC
W Weight of certain feature of independent

variable
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Subscripts
u Upstream branch
b Blow-through branch
v Vertical branch
CFD The LPLC value calculated by CFD
SVR The LPLC value predicted by SVR
ave Average value
UD Using only the dataset of uniform

design cases
UD + Sup Using the dataset of both uniform

design cases and the supplemental cases
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